Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38279746

RESUMEN

Amphetamines, as psychoactive drugs, are extensively abused in society and cause serious mental and physical disorders among young people. Furthermore, the extremely euphoric and excited sense of stimulant consumption leads to dramatic social problems. Determination of various analytes and related metabolites in the complex biological matrices at trace levels has made sample preparation an indispensable part of forensic sciences. According to the problems above, providing high sensitivity, solving some analytical problems like matrix effects in LCMS-MS, and needing a cleaner extract are remarkable aspects of novel sample preparation methods in drug analysis. Application of nanotechnology and carbon-based nanocomposites seems to bring the above properties in developed and novel sample preparation methods. This review will try to provide an overview of different carbonic nano adsorbents used in sample preparation methods of amphetamines and discuss their superiority over the other nanomaterials.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38279747

RESUMEN

Measuring clinically relevant biomarkers is critical for disease screening, diagnosis, and therapeutic monitoring. However, analyzing trace biomarkers in complex biological fluids remains challenging. Magnetic solid phase extraction (MSPE) has recently emerged as a promising sample preparation approach due to its simplicity, efficiency, and ability to selectively isolate biomarkers. Databases, including PubMed, Web of Science, and Scopus, were systematically searched for studies on MSPE for clinical biomarkers. Key findings on nanomaterial synthesis strategies, surface modifications, and applications in biomarker isolation were synthesized. Recent research demonstrates magnetic nanoparticles with tailored surface chemistry can selectively extract biomarkers like cancer antigens, neurotransmitters, and pharmaceuticals from matrices such as plasma, urine, and serum. MSPE enables clinically relevant limits of detection, high recovery, and purification in a rapid and simple workflow. This technique shows significant potential to improve clinical diagnostics. Further research on novel magnetic materials and surface functionalization is warranted. This review provides insights for researchers aiming to develop MSPE methods for sensitive and selective analysis of clinical biomarkers.

3.
Nanoscale ; 15(41): 16514-16538, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37815527

RESUMEN

Graphene-based nanozymes possess inherent nanomaterial properties that offer not only a simple substitute for enzymes but also a versatile platform capable of bonding with complex biochemical environments. The current review discusses the replacement of enzymes in developing biosensors with nanozymes. Functionalization of graphene-based materials with various nanoparticles can enhance their nanozymatic properties. Graphene oxide functionalization has been shown to yield graphene-based nanozymes that closely mimic several natural enzymes. This review provides an overview of the classification, current state-of-the-art development, synthesis routes, and types of functionalized graphene-based nanozymes for the design of electrochemical sensors. Furthermore, it includes a summary of the application of functionalized graphene-based nanozymes for constructing electrochemical sensors for pollutants, drugs, and various water and food samples. Challenges related to nanozymes as electrocatalytic materials are discussed, along with potential solutions and approaches for addressing these shortcomings.


Asunto(s)
Técnicas Biosensibles , Grafito , Nanopartículas , Nanoestructuras , Grafito/química , Técnicas Electroquímicas , Nanoestructuras/química
4.
Artículo en Inglés | MEDLINE | ID: mdl-37884758

RESUMEN

Around 30% of the scientific papers published on imprinted polymers describe the recognition of proteins, nucleic acids, viruses, and cells. The straightforward synthesis from only one up to six functional monomers and the simple integration into a sensor are significant advantages as compared with enzymes or antibodies. Furthermore, they can be synthesized against toxic substances and structures of low immunogenicity and allow multi-analyte measurements via multi-template synthesis. The affinity is sufficiently high for protein biomarkers, DNA, viruses, and cells. However, the cross-reactivity of highly abundant proteins is still a challenge.

6.
Biosensors (Basel) ; 13(6)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37366987

RESUMEN

Electrochemistry is a genuinely interdisciplinary science that may be used in various physical, chemical, and biological domains. Moreover, using biosensors to quantify biological or biochemical processes is critical in medical, biological, and biotechnological applications. Nowadays, there are several electrochemical biosensors for various healthcare applications, such as for the determination of glucose, lactate, catecholamines, nucleic acid, uric acid, and so on. Enzyme-based analytical techniques rely on detecting the co-substrate or, more precisely, the products of a catalyzed reaction. The glucose oxidase enzyme is generally used in enzyme-based biosensors to measure glucose in tears, blood, etc. Moreover, among all nanomaterials, carbon-based nanomaterials have generally been utilized thanks to the unique properties of carbon. The sensitivity can be up to pM levels using enzyme-based nanobiosensor, and these sensors are very selective, as all enzymes are specific for their substrates. Furthermore, enzyme-based biosensors frequently have fast reaction times, allowing for real-time monitoring and analyses. These biosensors, however, have several drawbacks. Changes in temperature, pH, and other environmental factors can influence the stability and activity of the enzymes, affecting the reliability and repeatability of the readings. Additionally, the cost of the enzymes and their immobilization onto appropriate transducer surfaces might be prohibitively expensive, impeding the large-scale commercialization and widespread use of biosensors. This review discusses the design, detection, and immobilization techniques for enzyme-based electrochemical nanobiosensors, and recent applications in enzyme-based electrochemical studies are evaluated and tabulated.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Ácidos Nucleicos , Reproducibilidad de los Resultados , Técnicas Biosensibles/métodos , Nanoestructuras/química , Carbono , Técnicas Electroquímicas/métodos
7.
Bioelectrochemistry ; 149: 108285, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36240548

RESUMEN

This study is designed to investigate the interaction of phenylpiperidine derivative drug paroxetine, which is an effective serotonin reuptake inhibitor and biomolecules through electrochemical, fluorescence spectroscopy, and molecular docking methods. The interaction between paroxetine and biomolecules was investigated by differential pulse voltammetry according to the decrease in deoxyguanosine anodic oxidation signal of double-stranded calf thymus DNA. Fluorescence spectroscopy studies were performed by titrating paroxetine against double-stranded calf thymus DNA solution at four different temperatures. The fluorescent results showed that paroxetine had a great affinity to bind with double-stranded calf thymus DNA. Interaction studies demonstrate that paroxetine binds to double-stranded calf thymus DNA via intercalation binding mode, and the binding constant values ​​were calculated as 7.24 × 104 M-1 and 1.52 × 104 M-1 at 25 °C, based on voltammetric and spectroscopic results, respectively. Moreover, with the aim of elucidating the interaction mechanism between paroxetine and double-stranded calf thymus DNA, electrochemical and fluorescence spectroscopy studies along with molecular docking analysis were made.


Asunto(s)
ADN , Paroxetina , Antidepresivos/farmacología , Dicroismo Circular , ADN/química , Simulación del Acoplamiento Molecular , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Termodinámica
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 288: 122197, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36470090

RESUMEN

Interactive association of an antifungal drug, climbazole (CBZ) with the carrier protein in bovine circulation, bovine serum albumin (BSA) was explored by fluorescence and absorption spectroscopy along with in silico techniques. The fluorescence and absorption spectral alterations of the protein upon addition of CBZ affirmed the complex foration between CBZ and BSA. The inverse temperature dependence behaviour of the KSV values as well as the hyperchromic result of the protein's absorption signals characterized CBZ-triggered quenching of BSA fluorescence as the static quenching. A weak binding affinity (Ka = 3.12-1.90-× 103 M-1) was reported towards the CBZ-BSA association process. Interpretation of thermodynamic data (entropy change = +14.68 J mol-1 K-1 and enthalpy change = -15.07 kJ mol-1) and in silico analyses anticipated that hydrophobic forces, van der Waals forces and hydrogen bonds were the key intermolecular forces in the complex stabilization. Inclusion of CBZ to BSA produced microenvironmental perturbations around Tyr and Trp residues, and also significantly defended temperature-induced destabilization of BSA. The binding locus of CBZ was detected in the proximity of Sudlow's sites I (subdomain IIA) and II (subdomain IIIA) of BSA, exhibiting greater preference towards site II, as revealed by competitive site-marker displacement investigations and in silico analysis. The stability of the CBZ-BSA complex was further validated by the molecular dynamics simulation assessments.


Asunto(s)
Imidazoles , Albúmina Sérica Bovina , Sitios de Unión , Dicroismo Circular , Simulación del Acoplamiento Molecular , Unión Proteica , Albúmina Sérica Bovina/química , Espectrometría de Fluorescencia , Termodinámica , Imidazoles/química
9.
Methods Protoc ; 5(6)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36412812

RESUMEN

The drug combination of rosuvastatin (ROS) and ezetimibe (EZE) is used to treat hypercholesterolemia. In this work, a simultaneous electrochemical examination of ROS and EZE was conducted for the first time. The electrochemical determination of ROS and EZE was carried out using adsorptive stripping differential pulse voltammetry (AdSDPV) on a glassy carbon electrode (GCE) in 0.1 M H2SO4. The effects of the pH, scan rate, deposition potential, and time on the detection of ROS and EZE were analyzed. Under optimum conditions, the developed sensor exhibited a linear response between 1.0 × 10-6 M and 2.5 × 10-5 M for EZE and 5.0 × 10-6 M, and 1.25 × 10-5 M for ROS. The detection limits for ROS and EZE were 3.0 × 10-7 M and 2.0 × 10-6 M, respectively. The developed sensor was validated in terms of linear range, accuracy, precision, the limit of determination (LOD), and the limit of quantification (LOQ), and it was evaluated according to ICH Guidelines and USP criteria. The proposed method was also used to determine ROS and EZE in human urine and serum samples, which are reported in terms of recovery studies.

10.
Bioelectrochemistry ; 147: 108219, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35933973

RESUMEN

Herein, a conjugated polymer and fullerene bearing architecture-based electrochemical Tyrosinase (Tyr) enzyme inhibition biosensor for indomethacin (INDO) drug active compound has been developed. For this purpose, three moieties of benzoxadiazole, thienopyrroledione, and benzodithiophene containing conjugated polymer; poly[BDT-alt-(TP;BO)] was used as a transducer modifier together with fullerene for catechol detection. The specific combination of these materials is considered an effective way to fabricate highly sensitive and fast response catechol biosensors for the first time. Electrochemical and surface characteristics of the modified electrodes were obtained by cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy, and atomic force microscopy. The effect of the parameters during chronoamperometric measurements on the biosensor response was also studied. Using optimized conditions, biosensing of catechol was achieved between 0.5 and 62.5 µM with a limit of the detection 0.11 µM. Tyr inhibition was followed with INDO drug active compound and it was found that INDO has a mixed type characteristic of enzyme kinetics with an I50 value of 15.11 µM.


Asunto(s)
Técnicas Biosensibles , Fulerenos , Técnicas Biosensibles/métodos , Catecoles/química , Técnicas Electroquímicas/métodos , Electrodos , Monofenol Monooxigenasa/química , Polímeros/química
11.
Biomimetics (Basel) ; 7(2)2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35645185

RESUMEN

Since the first reported case of COVID-19 in 2019 in China and the official declaration from the World Health Organization in March 2021 as a pandemic, fast and accurate diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has played a major role worldwide. For this reason, various methods have been developed, comprising reverse transcriptase-polymerase chain reaction (RT-PCR), immunoassays, clustered regularly interspaced short palindromic repeats (CRISPR), reverse transcription loop-mediated isothermal amplification (RT-LAMP), and bio(mimetic)sensors. Among the developed methods, RT-PCR is so far the gold standard. Herein, we give an overview of the MIP-based sensors utilized since the beginning of the pandemic.

12.
Biosensors (Basel) ; 12(5)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35624577

RESUMEN

The binding of drugs to DNA plays a critical role in new drug discovery and is important for designing better drugs. In this study, the interaction and binding mode of calf-thymus double-stranded deoxyribonucleic acid (ct-dsDNA) with cinacalcet (CIN) from the calcimimetic drug that mimics the action of calcium on tissues group were investigated. The interaction of CIN with ct-dsDNA was observed by the differential pulse voltammetry (DPV) technique by following the decrease in electrochemical oxidation signals to deoxyguanosine and adenosine. A competitive study was performed on an indicator, methylene blue, to investigate the interaction of the drug with ct-dsDNA by fluorescence spectroscopy. Interaction studies have shown that the binding mode for the interaction of CIN with ct-dsDNA could be groove-binding. According to the results obtained, the binding constant values were found to be 6.30 × 104 M-1 and 3.16 × 105 M-1, respectively, at 25 °C as obtained from the cyclic voltammetry (CV) and spectroscopic techniques. Possible molecular interactions of CIN with dsDNA were explored via molecular docking experiments. The docked structure indicated that CIN could fit well into the minor groove of the DNA through H-bonding and π-π stacking contact with CIN.


Asunto(s)
ADN , Cinacalcet , ADN/química , Simulación del Acoplamiento Molecular , Oxidación-Reducción , Espectrometría de Fluorescencia
13.
Micromachines (Basel) ; 12(11)2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34832748

RESUMEN

The screen-printed electrodes have gained increasing importance due to their advantages, such as robustness, portability, and easy handling. The manuscript presents the investigation of the interaction between double-strand deoxyribonucleic acid (dsDNA) and three anthracyclines: epirubicin (EPI), idarubicin (IDA), and doxorubicin (DOX) by differential pulse voltammetry on metal nanoparticles modified by screen-printed electrodes. In order to investigate the interaction, the voltammetric signals of dsDNA electroactive bases were used as an indicator. The effect of various metal nanomaterials on the signals of guanine and adenine was evaluated. Moreover, dsDNA/PtNPs/AgNPs/SPE (platinum nanoparticles/silver nanoparticles/screen-printed electrodes) was designed for anthracyclines-dsDNA interaction studies since the layer-by-layer modification strategy of metal nanoparticles increases the surface area. Using the signal of multi-layer calf thymus (ct)-dsDNA, the within-day reproducibility results (RSD%) for guanine and adenine peak currents were found as 0.58% and 0.73%, respectively, and the between-day reproducibility results (RSD%) for guanine and adenine peak currents were found as 1.04% and 1.26%, respectively. The effect of binding time and concentration of three anthracyclines on voltammetric signals of dsDNA bases were also evaluated. The response was examined in the range of 0.3-1.3 ppm EPI, 0.1-1.0 ppm IDA and DOX concentration on dsDNA/PtNPs/AgNPs/SPE. Electrochemical studies proposed that the interaction mechanism between three anthracyclines and dsDNA was an intercalation mode.

15.
Turk J Pharm Sci ; 17(5): 523-527, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33177933

RESUMEN

OBJECTIVES: In this work, a simple and rapid liquid chromatographic method for the simultaneous determination of irbesartan (IRBE) and hydrochlorothiazide (HCT) was developed and validated by reverse phase high performance liquid chromatography (RP-HPLC). MATERIALS AND METHODS: Experimental conditions such as different buffer solutions, various pH values, temperature, composition of the mobile phase, and the effect of flow rate were optimized. RESULTS: The developed RP-HPLC method for these antihypertensive agents was wholly validated and IRBE was detected in the linear range of 0.1-25 µg mL-1 and HCT was detected in the linear range of 0.25-25 µg mL-1. Moreover, the suggested chromatographic technique was successfully applied for the determination of the drugs in human serum and pharmaceutical dosage forms with limit of detection values of 0.008 µg mL-1 for IRBE and 0.012 µg mL-1 for HCT. CONCLUSION: The proposed rapid analysis method of these antihypertensive drugs can be easily used and applied by pharmaceutical companies for which the analysis time is important.

16.
Sci Rep ; 10(1): 11057, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32632278

RESUMEN

In this work, a novel nanosensing platform was suggested based on ruthenium for the sensitive determination of Idarubicin anticancer drugs. Ruthenium/Vulcan carbon-based nanoparticles were synthesized ultrasonication method and then characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). The mean particle size of the nanoparticles calculated by the TEM analysis was found to be 1.98 nm ± 0.29 nm, and the Ru nanoparticles were mostly dispersed on the support material. Glassy carbon electrode (GCE) surface was modified with Ruthenium/Vulcan carbon-based nanomaterials (Ru@VC), and characterization of the nanosensor was performed using electrochemical impedance spectroscopy and cyclic voltammetry. The limit of detection (LOD) and limit of quantification (LOQ) values were found as 9.25 × 10-9 M and 2.8 × 10-8 M in buffer samples. To demonstrate the applicability and validity of developed nanosensor, it was used for the determination of Idarubicin in Idamen® IV (10 mg/10 mL vial) and human serum sample. The results of recovery studies showed that the Ru@VC/GCE nanosensor was free from excipient interferences in the dosage forms of injection, and it can be successfully applied to biological samples.


Asunto(s)
Idarrubicina/análisis , Rutenio/química , Antineoplásicos/análisis , Antineoplásicos/sangre , Carbono/química , Técnicas Electroquímicas , Electrodos , Humanos , Concentración de Iones de Hidrógeno , Idarrubicina/sangre , Límite de Detección , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Microscopía Electrónica de Transmisión , Nanoestructuras/química , Nanoestructuras/ultraestructura , Tamaño de la Partícula , Espectroscopía de Fotoelectrones , Difracción de Rayos X
17.
Comb Chem High Throughput Screen ; 23(10): 1041-1048, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32342808

RESUMEN

AIM AND OBJECTIVE: Parkinson's disease (PD) is the second most common neurodegenerative disease. It is a multifactorial disorder (caused by aging, environmental, and genetic factors). Metabolomics can help explore the biomarker profiles for aging. Recent studies showed an association between the glutathione S-transferases (GSTs) polymorphisms and PD risk. The purpose of this study was to evaluate the association of this genetic polymorphism and the metabolomic profile in PD Tunisian patients, in order to identify effective biomarkers in the genetic differentiation. MATERIALS AND METHODS: In this study, the metabolomic profile changes related to GSTs polymorphism were searched in 54 Tunisian PD patients treated with L-dopa, using a gas chromatography-mass spectrometry (GC-MS) technique. RESULTS: The study results showed that mannose, methyl stearate, and three other unknown metabolites, increased in patients with GSTM1 positive genotype, while glycolic acid, porphine, monomethyl phosphate, fumaric acid, and three other unknown metabolites decreased in patients with GSTM1 positive genotype. Subsequently, the levels of glycolic acid, erythronic acid, lactic acid, citric acid, fructose, stearic acid, 2-amino-2-methyl-1,3-propanediol and three other unknown metabolites increased in patients with GSTM1 positive genotype, while the levels of proline, valine and two unknown metabolites decreased with GSTT1 positive genotype. CONCLUSION: All these altered metabolites are related to energy metabolism and it can be concluded that GSTs polymorphism based the shifting in energy metabolism and led to oxidative stress.


Asunto(s)
Glutatión Transferasa/metabolismo , Metabolómica , Enfermedad de Parkinson/metabolismo , Anciano , Biomarcadores/análisis , Biomarcadores/metabolismo , Femenino , Cromatografía de Gases y Espectrometría de Masas , Glutatión Transferasa/genética , Humanos , Masculino , Enfermedad de Parkinson/genética , Polimorfismo Genético/genética , Túnez
18.
Anal Bioanal Chem ; 412(21): 5053-5065, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31897559

RESUMEN

In this work, a novel strategy was introduced to develop a non-enzymatic hydrogen peroxide (H2O2) sensor based on rifampicin (RIF) electrodeposited on a polyvinylpyrrolidone (PVP)-capped CdSe quantum dot (CdSeQD), CoFe2O4 magnetic nanoparticle-modified glassy carbon electrode (CoFe2O4@CdSeQDs/RIF/GCE). CoFe2O4@CdSeQD magnetic nanocomposite (CoFe2O4@CdSeQD MNCs) was synthesized by a chemical co-precipitation method and characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). To prepare the non-enzymatic H2O2 sensor, firstly, the glassy carbon electrode surface was modified by dropping 10 µL of 5 mg mL-1 CoFe2O4@CdSeQD MNCs. Then, rifampicin was electrodeposited on the activated CoFe2O4@CdSeQDs/GCE by applying a potential of - 0.7 V for 400 s in pH 2.0 phosphate buffer containing 190 µM of rifampicin. Cyclic voltammetry and electrochemical impedance spectroscopy was used to investigate the electrochemical behavior of this sensor and was used for the reduction of H2O2. Construction of the calibration plot for H2O2 was performed using an amperometric method (- 0.2 V vs. Ag/AgCl) at the modified electrode. Two linearity ranges were obtained from 7 to 145 µM and 145 µM to 1.43 mM with sensitivities of 143.01 µA mM-1 and 28.67 µA mM-1 for the first and second linearity ranges, respectively. The detection limit was obtained as 0.38 µM (S/N = 3). Finally, the reliability of the nanosensor was confirmed with real sample analysis in different beverages such as juice and milk with satisfactory recovery results.


Asunto(s)
Compuestos de Cadmio/química , Cobalto/química , Compuestos Férricos/química , Peróxido de Hidrógeno/análisis , Nanocompuestos/química , Puntos Cuánticos/química , Rifampin/química , Compuestos de Selenio/química , Electrodos , Límite de Detección , Magnetismo , Microscopía Electrónica de Rastreo , Análisis Espectral/métodos , Difracción de Rayos X
20.
Polymers (Basel) ; 11(12)2019 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-31801184

RESUMEN

Molecularly imprinted polymers (MIPs) mimic the binding sites of antibodies by substituting the amino acid-scaffold of proteins by synthetic polymers. In this work, the first MIP for the recognition of the diagnostically relevant enzyme butyrylcholinesterase (BuChE) is presented. The MIP was prepared using electropolymerization of the functional monomer o-phenylenediamine and was deposited as a thin film on a glassy carbon electrode by oxidative potentiodynamic polymerization. Rebinding and removal of the template were detected by cyclic voltammetry using ferricyanide as a redox marker. Furthermore, the enzymatic activity of BuChE rebound to the MIP was measured via the anodic oxidation of thiocholine, the reaction product of butyrylthiocholine. The response was linear between 50 pM and 2 nM concentrations of BuChE with a detection limit of 14.7 pM. In addition to the high sensitivity for BuChE, the sensor responded towards pseudo-irreversible inhibitors in the lower mM range.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...